Cavity design for Class IV composite resin restorations — a systematic approach

M. Darveniza, MDSc, FRACDS*

Abstract

A definitive cavity design, without pins, that enhances retention and resistance form for simple and complex Class IV composite restorations is proposed. An extracted tooth model and diagrams illustrate the incisal step 45° bevel design for simple cavities and the incisal step veneer bevel design for complex cavities. A case report of a complex Class IV composite restoration is presented.

(Received for publication May 1985. Accepted June 1987.)

Introduction

It is accepted that most retention form (resisting a vertical withdrawing force) for a Class IV composite resin restoration is developed from numerous micro-mechanical attachments gained after etching enamel. However, resistance form (resisting apico-oblique forces) has not been widely addressed. Consequently, some composite resin fractures at the incisal edge, and dislodgement of the restoration, have often been entirely blamed on poor physical properties of the resin or mismanagement of the etched enamel respectively.

It has been suggested that the external cavity outline for the acid etched composite resin restoration should be butt jointed while others recommend bevelling of the cavo-surface margin in the form of either short, long, chamfered, chamfer shoulder, concave or feathered bevels. Incisal reduction has largely been considered as being unwarranted, with a feathered margin from the internal cavity outline to the incisal edge cavo-

surface margin being the preferred conservative approach. As well, the design of cavities with sufficient area of etched enamel and resisting walls and floors has not been adequately investigated.

The purpose of this paper is to produce a methodology of cavity preparation that optimizes resistance form for Class IV composite resin restorations.

Cavity design

The aims of the proposed cavity preparation are:

1. To produce sufficient bevelling of enamel in a mesio-distal direction, so that the approximate area of etched enamel is equal to that external area of missing enamel prior to bevelling (Fig. 1a, b, c).
2. To provide deep labial and lingual enamel bevels that oppose each other so that the resultant thickness of composite resin is capable of resisting labio-lingual rocking forces (Fig. 1c, d).
3. To reduce the incisal edge uniformly and to a depth whereby the resultant incisal thickness of composite resin is capable of resisting destructive incisal forces and prevent premature loss of the incisal edge by wear (Fig. 1a, b, d).
4. To produce a butt joint at the incisal edge cavo-surface margin and an incisal step to help prevent flaking of the composite resin at the incisal edge cavo-surface margin (Fig. 1a, b).
5. To provide flat floors at the incisal edge and gingivally that provide the restoration resistance to apically directed forces (Fig. 1a, b).

Incisal step 45° bevel

This conservative design is employed for simple Class IV cavities, that is, those with minimal mesio-distal loss of tooth structure that are subject to low to moderate incisal forces (Fig. 2a).

*Formerly Lecturer in Operative Dentistry, University of Queensland.
After caries removal, labial and lingual 45° bevels approximately 1 mm wide (mesiodistally) and 1 mm deep into enamel are placed (Fig. 2b). The labial bevel is neatly cut with a 1.4 mm diameter flame diamond (medium grit) bur;‡ but, to achieve a deep internal cut into the enamel on the more inaccessible and concave lingual surface, the bevel is placed with a 2.5 mm diameter bullet shape diamond (medium grit) bur† (Fig. 2c). Incisal reduction is performed with a 0.9 mm diameter cylindrical diamond (medium grit) bur† producing a step approximately 1 mm deep (inciso-gingivally) and 1 mm wide mesiodistally (Fig. 2d). The cylinder diamond bur is further used to flatten the gingival floor to approximately 1 mm (mesiodistally).

Finally, the flame diamond bur is used to lightly bevel the gingival floor enamel and to harmonize this with the labial and lingual bevels, incisal step and pulpo-axial angles. The gingival outline is not bevelled if this would result in a sub-gingival location or if the anticipated cavo-surface margin ends in dentine or cementum. Instead, the butt joint is retained. If a butt joint is placed, and further retention and resistance is required, a small groove may be placed in dentine at the axio-gingival line angle with a round 0.6 mm diameter bur.

Incisal step veneer bevel

This design circumvents the need for pins and is employed for complex Class IV cavities, that is, those that are wide mesio-distally and/or subject to high incisal forces or have a history of repeated failures (Fig. 3a).

After caries removal, labial and lingual bevels are placed of sufficient width to correspond to the mesio-distal loss of tooth structure (Fig. 3b). These veneer bevels are graduated depth cuts into the incisal third (0.8 mm), middle third (0.6 mm) and gingival third (0.4 mm) of the enamel, with the result that approximately half of the thickness of the enamel layer is removed (Fig. 1c, d). The labial bevel is achieved with a 1.2 mm diameter torpedo diamond (medium grit) bur. An initial 0.6 mm cut can easily be estimated by engaging half the diameter of the bur in the enamel and using the tip and side of the bur to form a chamfered cavo-surface margin (Fig. 1c, d). The lingual bevel is similarly prepared by the bullet shape diamond bur. The incisal and gingival reduction is performed as above for the incisal step 45° bevel design so as to harmonize with the veneers (Fig. 3c, d).

Case report

Examination

A thirty-eight year old man was referred because of repeated loss of composite resin restorations from

Komet, Lemgo, West Germany.
Fig. 3.-a, Labial view of extracted teeth 12, 11 and 21 illustrates a moderate size Class IV cavity on the mesial of
the 11 after caries removal, flattening the gingival floor and straightening the axial wall.
b, Labial view of the 11 cavity reveals the labial bevel (pencilled) with the 1.2 mm diameter torpedo diamond used
to cut deep, approximately half enamel thickness, veneer bevels ending in a chamfer.
c, Labial view of the 11 cavity reveals the incisal step with an 0.9 mm diameter cylinder diamond used to cut the
step, pulpo-axial bevel and flatten the gingival floor.
d, Incisal view of the 11 cavity reveals the completed incisal step veneer bevel preparation with the flame diamond
used to cut the gingival bevel (pencilled).

the mesio-incisal surfaces of 41. He requested either
a ‘white crown’ or restoration that ‘wouldn’t fall off’.

The cavity preparation revealed an 0.5 mm wide
(mesio-distally) labial and lingual 45° bevels with
a curved gingival floor (Fig. 4a). A functional
occlusal analysis revealed that lateral occlusion was
cuspids guided, with discission of other teeth.
Protrusive occlusion was guided by upper and lower
central incisors, along a smooth and straight path
with discission of other teeth. There was no
evidence to suggest acute clenching or bruxing
habits. However, the patient was a confirmed,
predominantly left-handed, nail biter. A history
revealed that five attempts to restore the tooth with
a ‘white filling’ had occurred in the last four years.
The patient had never before seen a rubber dam.

Discussion

The above described incisal step 45° and veneer
bevel designs have been taught and used by dentists

§No. 00. Ash Co., Weybridge, UK.
| Procal. 3M, Minnesota, USA.
**Visio-dispers. ESPE, Seefeld, West Germany.
at four participating continuing education courses at this Dental School and found to be sound and effective. Potentially, these preparations can make it possible to avoid the use of pins with their inherent disadvantages of shadowing of the pin, unless opaqued, through the composite resin, loss of the composite resin resulting in exposure of the pin, pulp and periodontal ligament exposures, cracking of the tooth, and weakening of the restoration. As the incisal step preparation allows a bulk of resin at the incisal edge, wear can occur without premature loss or gross chipping of composite resin at an otherwise bevelled incisal edge cavo-surface margin where the resin would be thin and attenuated.

It is recommended that for Class IV cavity preparations a rubber dam should be accurately placed14 to avoid contamination of the acid etched enamel. As well, the veneer bevels must be deep (almost half of the enamel layer thickness) and not thin and attenuated. Otherwise untoward flexing and wear of the composite resin could result in restoration failure.

This incisal step veneer bevel design is essentially a partial veneer crown preparation. Although its preparation may appear to be destructive it is more conservative of tooth structure than a full veneer crown. Aesthetically, most patients prefer this larger 'white' restoration to a big inlay. As well, these cavity designs can easily be incorporated with any dentine bonding technique used in Class IV restorations.

Conclusion

The incisal step 45° and veneer bevel preparations for the acid etch composite resin restorations discussed are designs that have been used without pins, allow supragingival margin placement, offer resisting walls to prevent restoration dislodgement by apico-oblique forces and provide incisal bulk to help prevent gross chipping of composite resin at the cavo-surface margin on the incisal edge.

The theoretical and technical appreciation of the designs are shown in line diagrams and extracted tooth models along with a case report demonstrating a satisfactory clinical result.
Acknowledgements

I would like to thank Mr D. Lund for his helpful advice and photography, and Mr D. Sheedy for his graphic work.

References

Address for reprints:
Department of Restorative Dentistry,
Dental School,
University of Queensland,
Turbot Street,
Brisbane, Qld, 4000.